Prisms and Topological Cyclic Homology of Integers

Wang Guozhen

Shanghai Center for Mathematical Sciences

Joint work with Liu Ruochuan

Topological Hochschild Homology

Let A be an E_{∞} -ring spectrum.

$$THH(A) = A^{\wedge S^1}$$

is the free S^1 - E_{∞} -ring spectrum generated by A. There is a cyclotomic structure defined on THH(A), i.e. an E_{∞} -homomorphism

$$\varphi: THH(A) \to THH(A)^{tC_p}$$

equivariant with respect to the group isomorphism $S^1 \cong S^1/\mathcal{C}_p$.

Topological Cyclic Homology

Topological periodic homology

$$TP(A) = (THH(A)^{tC_p})^{hS^1}$$

Topological negetive cyclic homology

$$TC^{-}(A) = THH(A)^{hS^{1}}$$

Topological cyclic homology

TC(A) is the equalizer of the canonical map

$$can: TC^-(A) \rightarrow TP(A)$$

and the Frobenius

$$\varphi: TC^-(A) \to TP(A)$$

Cyclotomic Trace

The cyclotomic trace map gives an homomorphism of E_{∞} -ring spectra:

$$tr: K(A) \rightarrow TC(A)$$

(Dundas-Goodwillie-McCarthy)

Let $A_0 \to A_1$ be a homomorphism of connective E_{∞} -ring spectra with nilpotent kernel on π_0 . Then the induced map on the fibers of the cyclotomic trace maps

$$tr: K(A_i) \to TC(A_i), i = 0, 1$$

is a stable homotopy equivalence.

Quasi-syntomic Descent Method

We will introduce the quasi-syntomic desecnt method to study topological cyclic homology.

- TP, TC⁻, TC are sheaves on the quasi-syntomic site.
- Quasi-syntomic rings (e.g. p-complete local complete intersection Noetherian rings) can be covered by quasiregular semiperfectoid rings.
- The Tate and homotopy fixed point spectral sequences for quasiregular semiperfectoid rings collaps at the E₂-term.

We will further understand:

- The extension problems for topological periodic homology of quasiregular semiperfectoid rings.
- **②** Cohomology of the sheaf $TP_*(-)$ in the quasi-syntomic site.
- The action of the Frobenius.

Perfectoids

A ring R is perfectoid if

- R is p-adically complete.
- **2** There is some $\pi \in R$ such that

$$\pi^p = \rho p$$

for some unit $\rho \in R^{\times}$.

- **3** The Frobenius map φ on R/p is surjective.
- **1** The kernel of Fontaine's map θ is generated by one element.

Quasiregular Semiperfectoid Rings

A ring S is quasiregular semiperfectoid if

- **1** S is p-complete with bounded p^{∞} -torsion.
- ② The derived cotagent complex L_{S/\mathbb{Z}_p} has p-complete Tor amplitude in [-1,0].
- **3** There exists a map $R \rightarrow S$ with R perfectoid.
- **4** The Frobenius of S/p is surjective.

Prisms

Let S be a quasiregular semiperfectoid ring.

Prisms of S

$$\hat{\triangle}_{S} = TP_{0}(S)$$

The Frobenius

$$\phi: \hat{\triangle}_S \xrightarrow[\simeq]{\operatorname{can}^{-1}} TC_0^-(S) \xrightarrow{\varphi} \hat{\triangle}_S$$

Fontaine's Period Ring

Let R be a perfectoid.

$$R^{\flat} = \varprojlim_{\phi} R/p$$

$$A_{inf}(R) = W(R^{\flat})$$

Fontaine's map

$$\theta: A_{inf}(R) \to R$$

sends $[(x_0, x_1, ...,)] \in A_{inf}(R)$ to $\lim_{i \to \infty} x_i^{p^i}$.

(Bhatt-Morrow-Scholze)

$$\hat{\triangle}_R \cong A_{inf}(R)$$

and the Frobenius map on $\hat{\triangle}_R$ corresponds to the Frobenius on $A_{inf}(R)$.

TC of Perfectoids

(Bhatt-Morrow-Scholze)

Let $\xi \in \hat{\triangle}_R$ be a generator of the kernel of θ . One can choose elements $u \in TC_2^-(R)$, $\nu \in TC_{-2}^-(R)$, $\sigma \in TP_2(R)$, such that

$$TC^{-}(R) = A_{inf}[u, \nu]/(u\nu - \xi)$$

$$TP(R) = A_{inf}[\sigma, \sigma^{-1}]$$

with Frobenius

$$\varphi(u) = \sigma$$
$$\varphi(\nu) = \phi(\xi)\sigma^{-1}$$

and canonical map

$$can(u) = \xi \sigma$$
$$can(\nu) = \sigma^{-1}$$

TC of Quasiregular Semiperfectoid rings

Let S be a quasiregular semiperfectoid ring.

- $TC_*^-(S)$ and $TP_*(S)$ are concentrated in even degrees.
- The canonical map

$$can: TC_*^-(S) \rightarrow TP_*(S)$$

is injective, and is an isomorphism on degrees ≤ 0 .

Nygaard filtration

- An element in $TP_{2k}(S)$ is said to have Nyggard filtration i, if it is detected by an element in $E_{\infty}^{2i,2i-2k}$ of the Tate spectral sequence.
- •

$$TC_{2i}^-(S) \cong \mathcal{N}^{\geq i} TP_{2i}(S)$$

Prisms of Quasiregular Semiperfectoid rings

The graded pieces of the Nygaard filtration on $\hat{\triangle}_S$ are isomorphic to topological Hochschild homology:

$$\mathcal{N}^{i}(\hat{\triangle}_{S})\cong THH_{2i}(S)$$

Moreover, we have:

(?)

$$\hat{\triangle}_{\mathcal{S}}$$
 has the structure of a δ -ring.

Recall that $\delta(x) = \frac{x^p - \phi(x)}{p}$, and δ -rings are commutative rings equipped with the operation δ .

Resolution of \mathbb{Z}_p

Suppose p is an odd prime. Let $R = \mathbb{Z}_p[p^{\frac{1}{p^{\infty}}}]$. We have the resolution:

$$\mathbb{Z}_p \to R \to R^{\otimes 2} \to R^{\otimes 3} \to \dots$$

- R is a perfectoid.
- $R^{\otimes i}$ are quasiregular semiperfectoid rings.

(Bhatt-Morrow-Scholze)

THH, TP, TC-, TC have flat desecnt.

$$TP(\mathbb{Z}_p) \cong \lim_{\Delta} TP(R^{\otimes \bullet})$$
 $TC^-(\mathbb{Z}_p) \cong \lim_{\Delta} TC^-(R^{\otimes \bullet})$

The BMS Spectral Sequence

There are spectral sequences

$$E_1^{i,j} = TP_i(R^{\otimes j}) \Rightarrow TP_{i-j}(\mathbb{Z}_p)$$

$$E_1^{i,j} = TC_i^-(R^{\otimes j}) \Rightarrow TC_{i-j}^-(\mathbb{Z}_p)$$

Let $S = R^{\otimes 2}$.

- \bullet $(\hat{\triangle}_R, \hat{\triangle}_S)$ forms a Hopf algebroid.
- 2 $TP_*(R)$ is a \triangle_S -comodule.
- **3** The complex $TP_*(R^{\otimes \bullet})$ is isomorphic to the cobar complex

$$C^{\bullet}(TP_*(R), \hat{\triangle}_S, \hat{\triangle}_R)$$

We have the spectral sequence:

$$Ext_{\hat{\wedge}_{S}}(\hat{\triangle}_{R}, TP_{*}(R)) \Rightarrow TP_{*}(\mathbb{Z}_{p})$$

Hopf algebroid structure

units

$$\eta_L: \hat{\triangle}_R \xrightarrow{id \otimes u} \hat{\triangle}_S$$
$$\eta_R: \hat{\triangle}_R \xrightarrow{u \otimes id} \hat{\triangle}_S$$

co-multiplication

$$\psi: \hat{\triangle}_S \xrightarrow{id \otimes u \otimes id} \hat{\triangle}_{R^{\otimes 3}} \xleftarrow{\cong} \hat{\triangle}_S \otimes_{\hat{\triangle}_R} \hat{\triangle}_S$$

where the last isomorphism come from

$$THH(R^{\otimes 3}) \cong THH(S) \wedge_{THH(R)} THH(S)$$

and flatness of $THH_*(S)$.

Structure of $\hat{\triangle}_R$

$$\hat{\triangle}_R = \mathbb{Z}_p[[z^{\frac{1}{p^{\infty}}}]]$$

•

$$\theta(z) = p$$

•

$$\varphi(z)=z^p$$

•

$$\xi = z - p$$

Structure of $\hat{\triangle}_S$

Let

$$x = \eta_L(z)$$
$$y = \eta_R(z)$$

 $\hat{\triangle}_S$ is multiplicatively generated over $\mathbb{Z}_p[[x^{\frac{1}{p^{\infty}}},y^{\frac{1}{p^{\infty}}}]]$ by the elements:

$$\frac{(x-y)^p}{p} + \text{higher terms}$$

$$\frac{(x-y)^{p^2}}{p^{p+1}} + \text{higher terms}$$

$$\frac{(x-y)^{p^3}}{p^{p^2+p+1}} + \text{higher terms}$$

17 / 30

Structure of $\hat{\triangle}_S$

There exists a unit $e \in \hat{\triangle}_S$ such that

$$y^p - p = e(x^p - p) \tag{1}$$

(Liu-Wang)

 $\hat{\triangle}_{S}$ is the δ -ring generated over

$$\mathbb{Z}_p[[x^{\frac{1}{p^{\infty}}},y^{\frac{1}{p^{\infty}}}]]$$

by e modulo equation (1) and completed under the Nygaard filtration.

Generastors of $\hat{\triangle}_S$

$$e - 1 = \frac{x^{p} - y^{p}}{p} + \frac{x^{2p} - x^{p}y^{p}}{p^{2}} + \dots$$
$$\delta(e - 1) = \frac{(x^{p} - y^{p})^{p} - p^{p-1}(x^{p^{2}} - y^{p^{2}})}{p^{p+1}} + \frac{(x^{p} - y^{p})^{p}x^{p}}{p^{p+1}} + \dots$$

Hopf Algebroid Structure maps

unit

$$\eta_L(z)=x$$

$$\eta_R(z) = y$$

co-multiplication

$$\psi(x)=x\otimes 1$$

$$\psi(y)=1\otimes y$$

comudule structure on $TP_*(R)$ (Breuil-Kisin twist)

$$\eta_R(\sigma) = \epsilon^{-1}\sigma$$

where $\phi(\epsilon) = e\epsilon$.

Algebraic Tate Spectral Sequence

Using the Nygaard filtration on $TP_*(R)$, we have the spectral sequence:

$$E_1^{i,j,2k} = THH_i(R^{\otimes j}) \Rightarrow E_2^{i-2k,j}(TP(\mathbb{Z}_p)), i,j \geq 0, k \in \mathbb{Z}$$

and its mod p analog:

$$E_1^{i,j,2k} = (THH/p)_i(R^{\otimes j}) \Rightarrow E_2^{i-2k,j}((TP/p)(\mathbb{Z}_p)), i,j \geq 0, k \in \mathbb{Z}$$

It turns out that they are isomorphic to the Tate spectral sequences after the E_2 -term.

The Modulo-p E_2 -term

In the mod p algebraic Tate spectral sequence, we have

$$E_2^{*,*,*} = \mathbb{F}_p[f,g,\sigma^{\pm}]/(g^2)$$

such that

•

$$f \in E_2^{2p,0,p}$$

represented by z^p ,

•

$$g \in E_2^{2p,1,p}$$

represented by $e-1=\frac{x^p-y^p}{p}+\ldots$,

•

$$\sigma \in E_2^{0,0,-1}$$

represented by σ .

The element $log(\frac{e}{\phi(e)^{\frac{1}{p}}})$

(Liu-Wang)

The element

$$log(\frac{e}{\phi(e)^{\frac{1}{p}}}) = log(e) - \frac{log(\phi(e))}{p}$$

lies in $\hat{\triangle}_S$.

$$log(\frac{e}{\phi(e)^{\frac{1}{p}}}) = \frac{x^p - y^p}{p} + \frac{x^{2p} - y^{2p}}{2p^2} + \dots + \frac{(1 + p^{p-1})(x^{p^2} - y^{p^2})}{p^{p+1}} + \dots$$

Tate d_p -differentials

$$x^p - y^p \doteq \frac{x^{2p} - y^{2p}}{p} + \dots \mod p$$

implies:

$$d_p(f) = fg$$

d_{p^2+p} -differentials

Applying Frobenius, we get

$$x^{p^2} - y^{p^2} \doteq \frac{x^{2p^2} - y^{2p^2}}{p} + \dots \mod p$$

Expanding

$$p^{2p}\log(\frac{e}{\phi(e)^{\frac{1}{p}}})$$

we get

$$\frac{x^{2p^2} - y^{2p^2}}{p} \doteq \frac{x^{2p^2 + p} - y^{2p^2 + p}}{p} + \dots \mod p$$

These imply:

$$d_{p^2+p}(f^p)=f^{2p}g$$

Higher Differentials

Let

$$\psi(k) = \frac{p^k - 1}{p - 1}$$

By induction, we have:

$$d_{p\psi(k)}(f^{p^{k-1}}) \doteq gf^{p^{k-1}+\psi(k)-1}$$

TC of integers

We can recover Bökstedt and Madsen's computations of $TC/p(\mathbb{Z}_p)$:

 $TP/p(\mathbb{Z}_p)$ is generated by the classes:

$$(\sigma^{p-1}f)^i, (\sigma^pg)(\sigma^{p-1}f)^i, \sigma^{np^k}(\sigma^pg)(\sigma^{p-1}f)^j$$

with $i, k \ge 0$; $n \in \mathbb{Z}, p \nmid n$; $0 \le j < \psi(k+1) - 1$.

 $(TC/p)_*(\mathbb{Z}_p)$ is free over $\mathbb{F}_p[\mathfrak{v}_1]$ with generators

$$\{1, \gamma, a_0\gamma, a_m \text{ for } m = 0, 1, \dots, p-1\}$$

lying in stem 0, -1, 2p-2 and 2p-2m-1 respectively.

Remark

The Bockstein sends v_1 to a_1 , and $v_1 a_{p-1}$ to $a_0 \gamma$.

Local fields (work in progress)

Let f(x) be an Eisenstein polynomial, and $R = \mathbb{Z}[x]/f(x)$. Consider the augmented cosimplicial ring spectrum

$$\mathbb{S} \to \mathbb{S}[z] \to \mathbb{S}[z_1, z_2] \to \dots$$

Applying $THH_{(-)}(R)$ we get

$$THH_{\mathbb{S}[z]}(R) \to THH_{\mathbb{S}[z_1,z_2]}(R) \to \dots$$

$$THH_{\mathbb{S}[z]}(R) \cong R[u]$$
 $THH_{\mathbb{S}[z_1,z_2]}(R) \cong R[u] \otimes \Gamma(\delta)$
 $\eta_R(u) = u + f'(x)\delta$

The Prismatic Hopf Algeboid

We set

$$A = \mathbb{Z}[x]$$

$$B = \mathbb{Z}[x_1, x_2, e, \delta(e), \dots]/(ef(x_1^p) - (x_1^p - x_2^p), \dots)$$

then (A, B) froms a Hopf algebraoid. If we can show $\pi_0 TP_{\mathbb{S}[z_1, z_2]}(R)$ is a δ -ring, then we have

- $\pi_0 TP_{\mathbb{S}[z_1,z_2]}(R) \cong B$.
- $\pi_* TP_{\mathbb{S}[z]}(R) \cong A[\sigma^{\pm}]$ is a *B*-comodule.
- We have the spectral sequence

$$Ext_B^j(A, \pi_i TP_{\mathbb{S}[z]}(R)) \Rightarrow TP_{i-j}(R)$$

• The above spectral sequence is consentrated in j=0,1 and collapses at the E_2 -term.

Thanks!